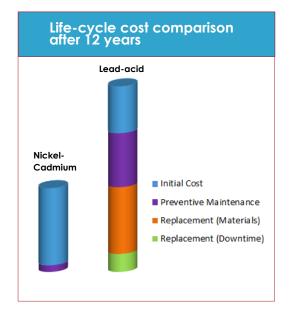


The benefits of Ni-Cd

- Total reliability
 - No risk of sudden death
 - Long service life
 - Tolerant of extreme temperatures
 - Electrical and mechanical robustness


Low Total Cost of Ownership (TCO)

Saft Ni-Cd benefits versus Lead-acid

Lower TCO of Saft Nickel-Cadmium batteries

- No downtime cost
- No replacement cost
- Low maintenance cost
- Optimized performance

Lower cycle cost of Saft Nickel-Cadmium batteries versus lead-acid

Ni-Cd battery composition

Active materials

Positive electrode

- Nickel Hydroxide (discharged)
- Nickel Oxyhydroxide (charged)

Negative electrode

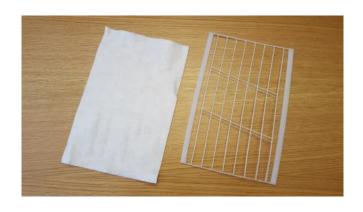
- Cadmium Hydroxide (discharged)
- Cadmium (charged)

$$2NiOOH + 2H2O + Cd$$

$$2Ni(OH)2 + Cd(OH)2$$

Ni-Cd battery composition

Separator

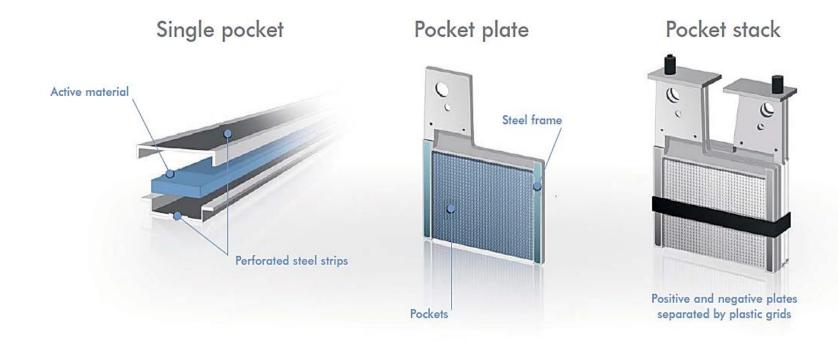

Grid or Felt

Electrolyte

 Potassium Hydroxide (KOH), destilled or deionized water and small quantities of Litium Hydroxide (LiOH)

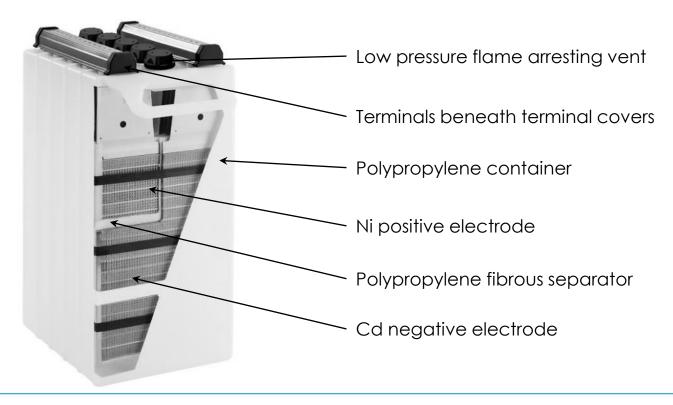
Nominal voltage

• 1.2 V/cell



Rated capacity

 Quantity of current and duration of time that a cell can provide at a discharge rate of 0.2C₅A down to a voltage of 1.00 V at 20°C



Pocket Plate electrode

Ni-Cd Pocket Plate Battery

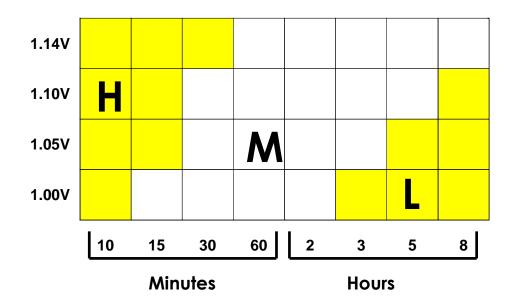
Plate types with optimized performance

Performance is related to plate thickness

L type

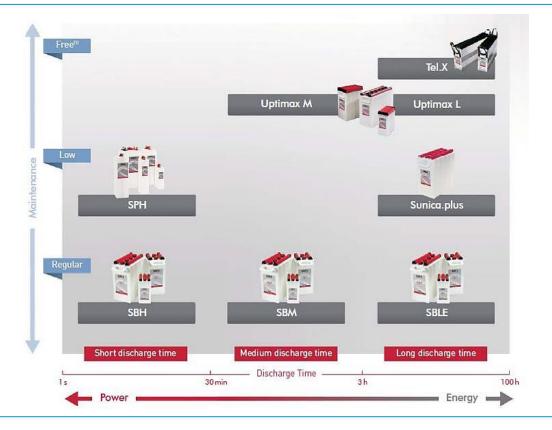
- Thick plates
- Optimized performance for low discharges for long discharge times

M type

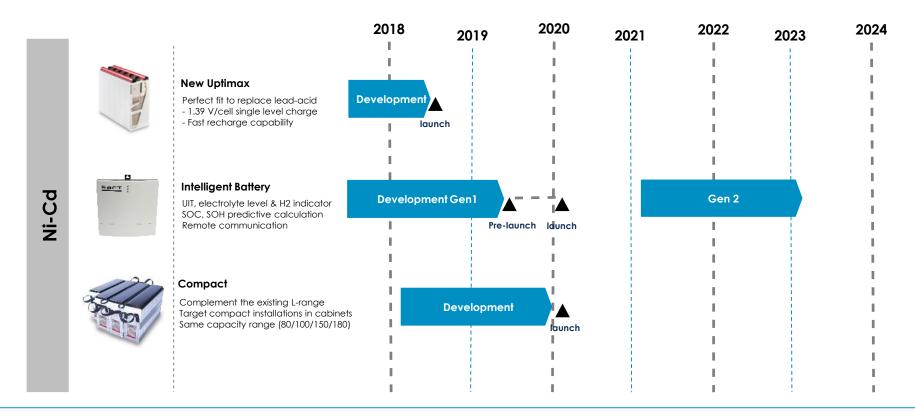

- Plate thickness between L and H type
- Optimized performance between L and H

H type

- Thin plates
- Optimized performance for high discharges for short discharge times


Most cost effective product

Saft stationary Ni-Cd batteries


A large offer to find the right battery

Ni-Cd New Product Road Map

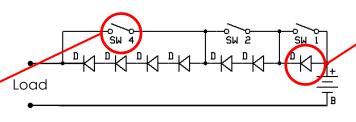
New Uptimax Range What's new?

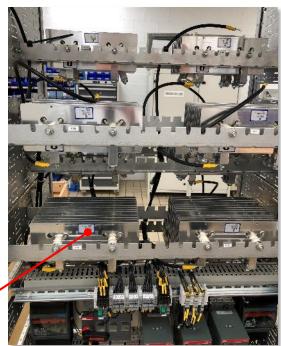
The 1st Ni-Cd battery adapted to narrow DC voltage window

- 1.39 V/cell single level charge
 - Perfect fit to replace lead-acid batteries
 - Adapted to narrow DC voltage window, without dropping diodes or DC/DC converters

- 95% State-Of-Charge (SOC) achievable in 8h @1.45 V/cell
- For minimal downtime and optimal availability

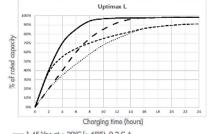
Uptimax Gen 3: More competitive solution to convert lead-acid




New Uptimax Range Dropping diodes

No need for dropping diodes

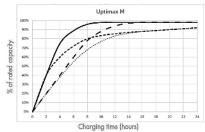
- Expensive component
 - Size of diodes is depending on the system current
- Lower voltage for the load
 - Voltage is decreased by diodes connected in series
 - Not needed with new Uptimax (1,39V/cell)


New Uptimax Range The 1st Ni-Cd battery adapted to narrow DC voltage window

Technical Specifications

	UP1 L energy range (L type)	UP1 M medium power range (M type)			
	For low-rate discharges over long periods between 1 and 100 hours	For mixed loads with low and high discharge rates, between 30 minutes and 3 hours			
Capacity range (C5 rate)	15 to 1700 Ah	8 to 1330 Ah			
Range of:	34 cells	38 cells			
Charge voltage	Single level: 1,39 V/cell Two level: 1,39 V/cell float, 1,45 V/cell boost Temperature compensation: -2 mV/°C				
Recharge	95% SOC in 8 hours @ 1,45 V/cell, 0,2 C5A				
Topping up interval	No topping up needed when charged according to specification				

Figure 3(a): Available capacity after constant voltage charge


Available charge current 0.1 C,A or 0.2 C,A at +20°C (+68°F)

- --- 1.45 Vpc at + 20°C (+ 68°F), 0.2 C_sA
- --- 1.45 Vpc at + 20°C (+ 68°F), 0.1 C_sA
- 1.39 Vpc at + 20°C (+ 68°F), 0.2 C₅A 1.39 Vpc at + 20°C (+ 68°F), 0.1 C₅A
- *For charging voltages higher than 1.45 V/cell, a current limit of 0.1 C.A is recommended

Figure 3(b): Available capacity after constant voltage charge

Available charge current 0.1 CsA or 0.2 CsA at +20°C (+68°F)

- 1.45 Vpc at + 20°C (+ 68°F), 0.2 C_cA
- 1.45 Vpc at + 20°C (+ 68°F), 0.1 C_sA
- ----1.39 Vpc at + 20°C (+ 68°F), 0.2 C₅A
- 1.39 Vpc at + 20°C (+ 68°F), 0.1 C_sA

*For charging voltages higher than 1.45 V/cell, a current limit of 0.1 C.A is recommended

New Uptimax Range Your choice

New Uptimax can be

- Charged with 1,42 V/cell or 1,39V/cell
- Charged with single and two level charge method
- Installed together with previous generation in case cell replacement is needed

How new Uptimax creates new business?

Make sizing possible with narrow voltage window, increase your revenue base!

Ex: 110V +/-10%

			Uptimax	New Uptimax
System voltage window:		99 – 121 V	99 – 121 V	
Single level charge voltage:		1.42 V/cell	1.39 V/cell	
Max No of cells (max system voltage / charge voltage/cell):		cell):	85	87
End of Discharge (min system voltage / No of cells):		1.165 V/cell	1.137 V/cell	
			1	
	Max 85 cells possible	EOD i	s too high ×	EOD is OK √

Intelligent Battery Customer wish to our new product

Target

Upgrade our product offering through digitalization

A battery monitoring system measuring key battery parameters

- Running time, State Of Charge calculation by advanced algorithm
- Remote monitoring capability
- Battery history: voltage, current, temperature (U, I, T) storage
- Cell voltage measurement
- Electrolyte level detection
- Hydrogen gas detection

Intelligent Battery Business Approach

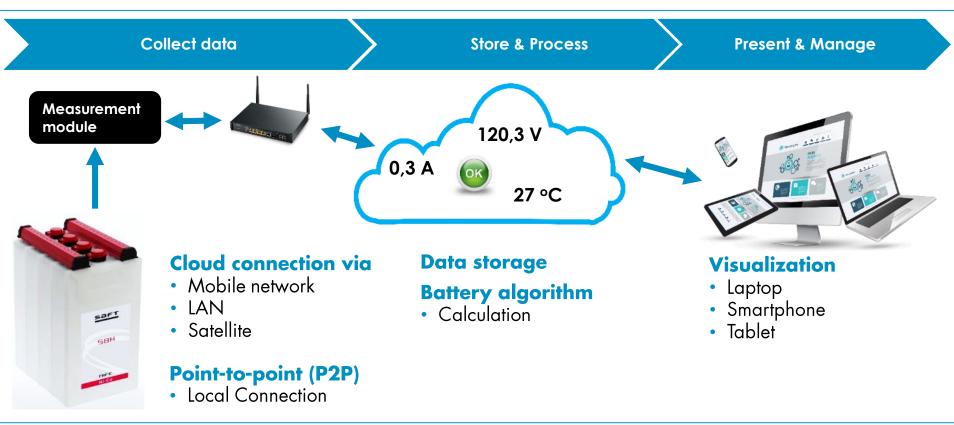
Features

- State of Health
- 2. State of Charge
- 3. UIT logging
- 4. Electrolyte level
- 5. Cell voltage measurement
- 6. Hydrogen detection

Benefits

- 1. Capex planning
- 2. Battery availability
- 3. Battery history
- 4. Fewer site visits
- 5. Fewer site visits
- 6. Increased safety

Product launch target



Q3-2020

Always connected to your backup – piace of mind

Intelligent Battery Overview

Intelligent Battery Live status updates

Questions

Why using it for Ni-Cd?

 We have always used the need for BMS systems as an argument against Lead Acid

Answers

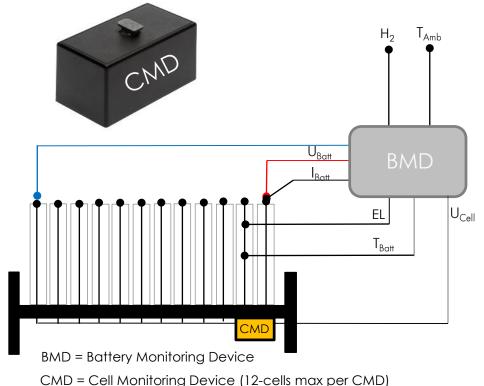
Today everything is connected

- Customers expect connectivity
- Trend for asset monitoring

Fewer site visits is a requirement

Especially in remote locations

Used as complement to site visits

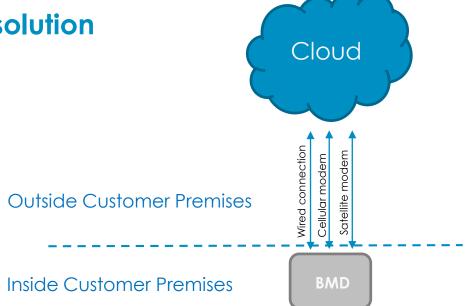

Not as replacement of manual service

Intelli-Connect How does that work?

Measures battery data

- By default parameters:
 - Battery voltage (UBatt)
 - Battery current (IBatt)
 - Battery temperature (TBatt)
 - Ambient temperature (TAmb)
- Optional parameters:
 - Electrolyte Level detection (EL)
 - Hydrogen gas detection (H2)
 - Cell voltage measurement (UCell)

Intelli-Connect How data is transferred


Answer data communication solution between BMD & Cloud

Baseline connectivity

Wired connection

Connectivity options

- 2G/3G modem (e-SIM card in BMD)
- Satellite modem

Intelli-Connect Data management

SECURITY

Data encryption:

Communication between BMD and Cloud is encrypted (TLS protocol)

Access protection:

All incoming connections to BMD on Internet interfaces are rejected. Communication with the Cloud is initiated by BMD

Cyber security audit:

Performed by third party according to ISO 27005

PRIVACY

Data ownership:

Data are owned by customer Customer can only access their own data

Saft usage of data:

Upon approval of customer

CLOUD

Cloud solution:

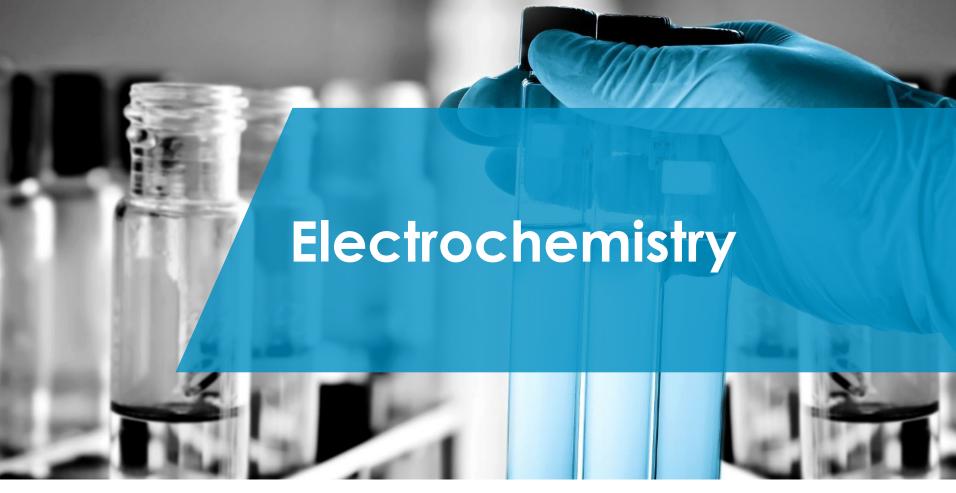
Microsoft Azure

Cloud doesn't belong to Saft

Saft is paying a monthly fee to use Cloud functionalities for data storage and usage

Companies using Azure

Total, Airbus, Ericsson, Schneider Electric, Rolls Royce



AGENDA

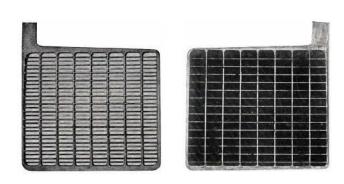
Electrochemical Reactions

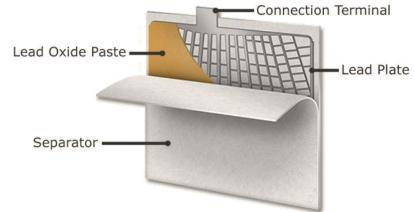
Lead-Acid

- 1. Plates/Electrodes react continuously with Acidic electrolyte
- 2. Corrosion of Grids and components. Evolution of highly corrosive SO₃ acidic fumes.

Ni-Cd

- Plates/Electrodes do not react with Alkaline electrolyte
- 2. No presence of KOH solution in the chemical reaction.
- 3. The electrolyte is only acts as an ion carrier, NO Corrosion!

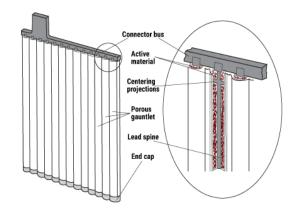


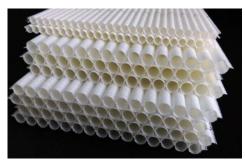


Electrode Structure - Pasted Plates

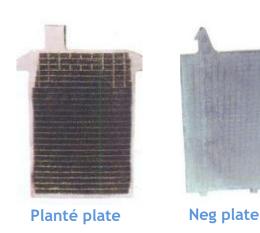
 No enveloping of active materials in Pasted plates (Vented & VRLA) lead acid.

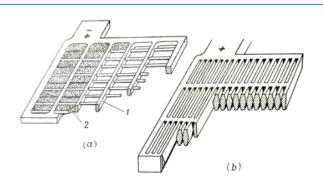
 Tendency of electrodes to swell and shedding of active mass. Which cause internal shorting.





Electrode Structure - Tubular Plates


- Tubular plates have soft and non-conducting woven fabric enveloping to hold the active mass
- Tubular Spines are thin to maintain active mass ratio.
- If a spine cracks in between of a tube due to corrosion. Rest of the A/mass has no part to play in electrochemistry



Electrode Structure - Planté

Thicker plates are used for active mass corrosion, mechanical strength and life

- Planté plates are designed to shred and generate active material mass by its own during electrolysis.
- 99.99% pure Soft-Lead used which has very low mechanical strength

- Planté plates has high plate thickness.
 Heavy weight. Very low Energy Density
- Deposition of active mass creates short circuit and premature death
- Hanging plate structure deforms easily

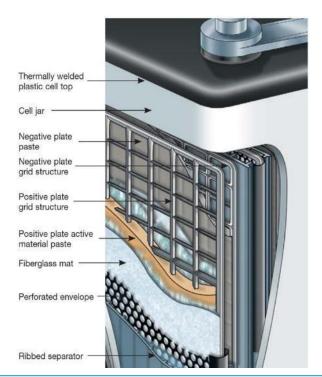
Electrode Structure - Pocket Plate

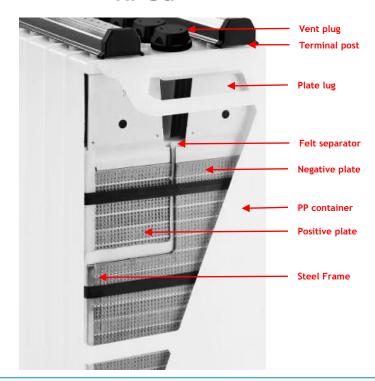
 Pocket plate construction enables to produce very thin plates for high performance without losing mechanical strength

 Electrodes are strong to withstand shock/vibrations in severe seismic conditions

Active material

Perforated steel strips


 Different dimension of thickness pocket plate can be constructed. Many steps of capacity for a type of plate, providing flexibility and optimum capacity selection for an application



Cell construction

Lead Acid

Ni-Cd

