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ABSTRACT

In this study we analyze the problem of searching an expanding area over time with binary sensors. This problem 
can be applied to scenarios where the searcher has the location information of a mobile target with a time delay and the 
target speed is known. We consider two basic search models, random and exhaustive, and analyze formulas to measure 
the effectiveness of search process in terms of cumulative detection probability and compare the results for both plans. 
We also derive analytical expressions that will assist the decision maker in planning and utilizing his/her search effort. The 
results are verified with Monte Carlo simulations. 
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GENİŞLEYEN BİR SAHANIN KESİN MENZİLLİ SENSÖRLER İLE GELİŞİGÜZEL VE TAM 
ARANMASININ ANALİTİK OLARAK KARŞILAŞTIRILMASI

ÖZET

Bu çalışmada zaman ile birlikte genişleyen bir sahanın kesin menzilli sensörler ile aranması problemi incelenmiştir. Söz 
konusu problem bir hedefin süratinin ve zaman gecikmeli olarak mevkisinin bilindiği problemlere uygulanabilir. Çalışma 
kapsamında gelişigüzel ve tam olmak üzere iki tip arama modeli ele alnımış ve etkinliklerini birikimli tespit olasılığıyla 
ölçen formüller incelenmiştir. Ayrıca planlayıcıya arama gayretini planlama ve kullanmada destek sağlamak üzere faydalı 
analitik sonuçlar da elde edilmiştir. Elde edilen sonuçlar Monte Carlo simülasyonları ile doğrulanmıştır. 

Anahtar Kelimeler: Genişleyen saha araması, hareketli hedef, arama teorisi

1. INTRODUCTION

Search theory which basically involves the prob-
lems related with finding an object of interest that is 
missing or lost has numerous applications in diverse 
fields for decades. The mathematical basis of search 
theory has been a subject of serious study since World 
War II. (Koopman, 1946, 1980) established the basis 
for a rigorous study of search theory and practice with 
his pioneering work during World War II (Cooper, 
2003). Since then search theory played an important 
role in military and non-military applications. It is used 
extensively for such things as mineral deposits, Search 
and Rescue (SAR) operations, police operations, pat-
tern recognition, disease or contamination, medical 
diagnostics, and markets (Koopman, 1999). Some 
military applications involving search operations 
include searching for drug interdiction, broad area 
searches with ships (maritime problems), aircrafts or 
satellites, hunting for mobile missile launchers, terrorist 
combat groups, smugglers, etc.

The above applications can be categorized into 
three main types of search problems; barrier patrol, 
point coverage, and area search, each of which is 
geared towards a specific purpose (Cardie and Wu, 
2004). In a barrier patrol, the adversary (or the target) 
has a specific goal of approaching a port, base or 
high value platform. To prevent the adversary to ac-
complish its mission the searcher must deploy sensors 
such that the probability of detection is maximized. 
Instead of establishing a traversal towards a single 
place, in point coverage scenarios, multiple points 
of interest must be protected. Therefore, sensors are 
deployed in the vicinity of these points of interest, 
while the remainder of the area remains relatively 
void of sensors. Area search scenarios consist of a 
general area of the ocean being covered by a field of 
sensors (Cardie and Wu, 2004; Golen, 2009). In an 
area clearance scenario, there are no obvious points 
of interests that an adversary would gravitate towards, 
such as a port. Thus, the field designer is left to make 
an intelligent guess as to how to optimally allocate the 
limited amount of search effort. Clearly, area clearan-
ce scenarios are relatively more complex than barrier 

and point coverage scenarios. There has been plenty 
of work in the literature for all these types of problems 
and an excellent survey of search theory literature is 
available in (Benkoski, et al., 1991). Besides early 
analytical works, evolutionary algorithms plays an 
important role in search theory especially for large 
scale search and sensor optimization problems. For 
such problems, evolutionary algorithms were first int-
roduced to the field by (Holland, 1975). Some other 
significant work are; (Raisanen and Whitaker,2003) 
for optimizing cell coverage in cellular networks, (Xue 
et al., 2003) for minimizing the power consumption 
of a wireless network, (Ranganathan et al., 2006) for 
optimizing communication paths in heterogeneous 
sensor networks, (Barrett, 2007), (Jourdan and Weck, 
2004), (Spanache et al., 2004) for the applications 
of genetic algorithm for optimization sensor deploy-
ment problems. Studies in search theory involving 
traditional monostatic sensors are followed by mul-
tistatic sensor network studies mainly on sensor & 
ping optimization and multistatic tracking algorithm 
categories. In their study (DelBalzo et al., 2005), 
analyze the oceanographic effects on such systems. 
(Washburn, 2010)  and (Walsh and Wettergren, 2008) 
approximate the search performance for multistatic 
fields. (Karataş, 2012), (Tharmarasa, et al., 2009), 
(Patrick, 2006) analyze the problem of determining 
the optimal number and placement of multistatic 
sonar sensors to achieve maximal coverage. (David 
et al., 2009), (Saksena and Wang, 2008), (Wang et 
al., 2008) analyze the problem of ping scheduling 
and strategies while optimizing both the temporal and 
spatial sensing coverage. (Erdinc,2006), (El-Jaber et 
al., 2009), (Ehlers et al., 2009), (Orlando et al., 2010), 
(Anastasio et al., 2010), (Daun and Ehlers, 2010), 
(Orlando and Ehlers, 2011) work on the tracking 
algorithms for multistatic systems.

A logical extension of area search problems in-
volves searching an expanding area over time with 
traditional monostatic sensors which may be later 
on expanded to the multistatic case. As opposed to 
searching a fixed area, in an expanding area search 
problem the area to be searched does not have stable 
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borders and a specific shape. This type of problems 
can be applied to scenarios where the searcher has the 
location information of a mobile target with a time de-
lay and the target speed is known. Real life problems 
in SAR operations such as searching for a life raft adrift 
in the ocean, searching for the survivors from a plane 
crash or the crewmembers of a sunken boat as well 
as searching adversaries with datum information that 
are trying to evade the searcher are a few examples of 
expanding area search problems. In SAR operations 
maximizing the CDP at the greatest possible rate with 
the available search resources will save more lives by 
finding and assisting persons in need more quickly. 
Time is an important factor in saving lives, especially 
when the distressed person is injured or the weather 
has become extreme enough to threaten continued 
survival (Cooper et al., 2003). There are analytical 
methods and formulas developed for measuring the 
effectiveness - Cumulative Detection Probability 
(CDP) - of area search where you apply random or 
exhaustive methods for a fixed area. Solutions to 
such problems as in (Koopman,1946, 1980, 1853) 
and (Washburn, 1981, 1983) in the literature assume 
that search effort is an abstract quantity that may be 
allocated arbitrarily over the search space, and the 
CDP is a function of total amount of effort applied to 
target’s location (Kierstead, 2003).  However, facing 
an expanding area search problem, the formulas deri-
ved for fixed area search problems do not express the 
planner needs to evaluate the expected effectiveness 
of his search effort. This extension emerges the need 
to develop analytical models and scientific arguments 
for such problems.

This article addresses and analyzes a basic prob-
lem in search theory concerning the possible future 
distribution of a target’s location. Given an initial 
target location and a constant velocity, what is the 
chance of finding it with a binary sensor?  In specific, 
we focus on the following actual area search problem: 
there is a searcher and a target where the objective of 
the searcher is to detect the target. The objective of 
the target may vary depending on the scenario, such 
that an adversary target may try to stay undetected 

and act non-cooperatively whereas a neutral target 
of interest may be moving subject to drift, wind, etc. 
The searcher receives the location information of the 
target for a very short period of time and looses it. 
Just after getting the location information the searcher 
approaches to the last known position (datum) of the 
target and the target starts moving away from datum. 
The area of target uncertainty increases within time. 
The Measure of Effectiveness (MoE) (or the objective 
function) of the search problem is the CDP at time t. 
We are analyzing analytical solutions for MoE when 
one or multiple searchers executes random and ex-
haustive search. This article contributes search theory 
literature in terms of analyzing the effectiveness of 
two basic search strategies, namely random and ex-
haustive, for searching an expanding area over time.  
Deriving analytical expressions to compare both stra-
tegies, our main ambition is to assist decision makers 
in planning, utilizing and conducting search effort as 
well as depicting the cause-effect relationship of this 
special case of search process using crucial parameters 
like time delay, searcher capability and target speed. 

The organization of the paper is as follows. First, 
general definitions related to the search theory are 
defined in Section 2. Section 3 presents the formal 
problem statement for the expanding area search 
problem. Section 4 gives an overview to random and 
exhaustive search models. Section 4 proposes the 
expanding area search model and analytical results 
for random and exhaustive search. Comparison of 
our analytical estimates with Monte Carlo simulation 
data is presented in section 6 and finally section 7 
summarizes the main results.  

2. DEFINITIONS

In this section are given some useful definitions 
related to the search theory that form a basis to the 
computations. 

2.1 Search
Search process is an operation that uses available 

resources to find persons or objects of interest whose 
exact location is currently unknown. The formal desc-

ription of search is “to go or look through (a place, 
area, etc.) carefully in order to find something missing 
or lost” (Oxford Dictionary, 2010). (Koopman, 1999) 
describes the operation of search as “an organic whole 
having a structure of its own—more than the sum of 
its parts.” 

2.2 Searcher and Target
The “target” as the object of interest while the 

“searcher” is the object or agent concerned with 
finding the target.

2.3 Last Known Position (Datum)
The last witnessed, reported or substantiated (by 

clues or evidence) location of the missing/lost object/
target. In search theory generally the term “Datum” is 
used to describe any point on a map which conveys 
information to the person reading it (Skip and Brett, 
2008).

2.4 Probability of Detection (PoD)
It is the conditional probability that the target will 

be detected during a single sortie if the target is present 
in the area searched during the sortie (Champagne 
et al., 2003).

2.5 Cumulative Detection Probability (CDP)
Cumulative detection probability is the cumulative 

probability of detecting (PoD) the target given that it 
was in the searched area on each of several successive 
searches of that area (Champagne et al., 2003). The 
probability that at least one detection no later than 
time t is expressed as FT(t).

2.6 Binary Sensor (Cookie Cutter)
It is common to approximate a searcher’s the 

average ability to detect a particular target under a 
specific set of environmental conditions in order to 
facilitate analytical modeling of the search process. 
The  simplest  approximation  is  that  of  a  definite  
range  law:  targets  which  come  within  a  certain 
distance of the searcher are always detected, and tar-
gets which do not come that close are never detected 
(hence the searcher cuts a clean swath like a “cookie 
cutter”) (Wagner et al., 1999). This model thus yields 
the correct number of targets detected by a single 

searcher making a single pass through an area.  Also, 
the sensor is characterized by only a single parameter: 
its maximum detection range, R. Binary sensors are 
also known as cookie cutter sensors with a sweep 
width of w=2R defined as follows:

	 [ ]1, ,
( )

0,
   
  otherwise
x R R

PoD x
 ∈ −= 
 	

(1)

where x is the distance between the searcher and 
target.

2.7 Coverage Ratio (C)
Coverage factor is a relative measure of how thor-

oughly an area has been searched, or “covered.” It 
is defined as the ratio of the area effectively swept to 
the physical area of the segment that was searched 
(Cooper et al., 2003). If we are searching an area of 
size A for a period of time t with a searcher of speed 
v and sweep width of w, then coverage ratio is:

Area Effectively Swept
Search Area

vwtC
A

= = 	 (2)

2.8 Detection Rate 
Detection rate is commonly referred as the PoD 

per unit time and if the rate is not constant, i.e. non-
homogeneous within time, it is shown as γ(t), the 
detection rate at time t. For homogeneous environ-
ments detection rate is a constant, λ.

3. PROBLEM STATEMENT

The search problem analyzed in this study can be 
described in general as a “two-sided search problem 
where a continuous random or exhaustive search 
effort is applied by one or more search units to detect 
a moving target in a continuous expanding target 
space” (see Figure 1). 

The simplest types of search problems are one-si-
ded search problems in which the searcher can choose 
his strategy, but the search object neither chooses a 
strategy nor reacts to the search in any way. In two-
sided search problems, both the search object and 
the searcher are allowed to choose their strategies. 
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The problem we are dealing with in this study can be 
regarded as both one and two sided problem since we 
assume that our search effectiveness prediction will be 
independent of the target motion model. In specific 
our model will consider the worst case situation by 
assuming that the area of uncertainty for the target 
is determined by the maximum distance it can travel 
during time t. The target may be moving in order not 
to be detected (non-cooperatively) or drifting with 
the wind and waves. The search effort is defined 
by the amount of time spent during a search. Since 
time is continuous, the search effort is continuous. 
The target space is taken as the expanding area of 
target uncertainty in which the target is expected to 
be present. Therefore, the target space is a continuous 
region. The effectiveness of the search is measured 
for two methods of area search, one for random and 
the other for exhaustive search.

In specific, the objective of the searcher is to 
detect the target and the mobile target is assumed to 
be neutral or non-cooperative. The searcher receives 
the location information of the target for a very short 
period of time and looses it. Just after getting the lo-
cation information the searcher approaches to the last 
known position (datum) of the target and the target 
starts moving away from datum. The area of target 
uncertainty increases within time t. We are seeking 
analytical solutions for CDP when one or multiple 
searchers executes random and exhaustive search.

4. RANDOM AND EXHAUSTIVE SEARCH 
MODELS

4.1 Random Search Model

“Random search” as a concept plays a central role 
in search theory as its use places a lower bound on the 
probability of detection. It is a method where every 
unit of search effort is employed in an unsystematic 
manner – randomly- in the field of interest. Since it 
has been shown to follow an exponential distribution, 
random search is characterized by the “memoryless 
property” of that distribution (Washburn, 2002). This 
is consistent with intuition in that the length of time 
a searcher has been looking to detect a target has no 
bearing on subsequent detection probability.

4.1.1 Random Search for One Searcher

The main assumption is that the searcher is a 
cookie-cutter sensor with range R or sweep width of 
w=2R. In short intervals of Δt the increment of area 
searched is a=wvΔt. The searcher track consists of 
disjoint segments and each segment is uniformly 
& independently distributed in the search area A. 
(i.e., any point in A equally likely to be searched at 
any instant in time). Because the increment of area 
searched a=wvΔt, is uniformly distributed over A,

{ }( , )detection in wv tP t t t
A
∆

+ ∆ =
	

(3)

If we call γ(t) = detection rate = P(detection)/
unit time, the cumulative detection probability for 
a random search, CDPrand with detection rate γ(t) is 
(Stone, 1989; Koopman, 1980):

( ) 0
( ) 1 exp ( )

t

T randF t s  ds      
 

 

 
 	 (4)

where

{ }( , )
( )

detection in Wv tP t t t WvAt
t t A

γ
∆+ ∆

= = =
∆ ∆ 	

(5)

And, with constant detection rate λ=wv/A, the 
CDPrand can be restated as:

( ) ( ) 1 1 expt
T rand

wvtF t e  
A

λ−  = − = − − 
  	

(6)

Hence substituting C from (2), 

( ) ( ) 1 C
T randF t e−= −

	 (7)

4.1.2 Random Search for Multiple Searchers

The random search model generalizes for multiple 
searchers. If one searcher has detection rate λ, then 
n searchers have detection rate nλ (Benkoski et al., 
1991). Therefore CDPrand for n searchers can be ap-
proximated as:

( ) ( ) 1 1 expt
T rand

wvtF t e  n
A

λ−  = − = − − 
  	

(8)

4.2 Exhaustive Search Model
Exhaustive search is an area search model widely 

used in search theory. That is, the target is hiding 
somewhere in an area A and a perfect search is con-
ducted by the searcher. There is no search overlap 
(every point in A is searched once before any point is 

searched twice), no search is conducted outside area 
A and all of area A is covered by the searcher sensor. 
(see Figure 2) in real life, actual area search, when 
trying to approximate the exhaustive search ideal, 
is usually conducted using parallel sweeps (mowing 
the lawn), spiral-in, or spiral-out paths (Wagner et al., 
2004). Once again, the main assumption is that the 
searcher is a cookie-cutter sensor with a maximum 
range R. 

4.2.1 Exhaustive Search for One Searcher
Since the search effort is expended ideally (with 

no overlap and no wasted effort), the cumulative 
detection probability for a exhaustive search, CDPexh 
with one searcher is equal to the coverage factor for 
C≤1, and equal to 1 for C>1 (Stone, 1989; Koop-
man, 1980).

( )
, 1

( )
1 , 1

T exh

wvt C
F t A

C

 ≤= 
 > 	

(9)
	

or 

( ) ( ) min ,1T exh
wvtF t
A

 =  
  	

(10)

4.2.2 Exhaustive Search for Multiple 
Searchers

The exhaustive search model also generalizes for 
multiple searchers. If multiple equivalent searchers are 
used to search the area A, the coverage is nC. There-
fore CDPexh for n searchers can be approximated as:

( ) ( ) min ,1T exh
wvtF t n
A

 =  
  	

(11)

Figure 1. Search Problem Classification

 

Figure 2. Overlap, Area Missed and Wasted Effort Examples
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4.3 Comparison of Random and Exhaustive 
Searches for Fixed Area Search: 

In exhaustive search the CDPexh is equal to the 
coverage factor since the effort is expended ideally 
to the area. In random search the CDPrand equals to 
“1-exp(-coverage factor)” since the effort is expended 
with wasteful overlap to the area. Figure 3 illustrates 
the CDP functions for both random and exhaustive 

searches executed in fixed areas (i.e. not expanding 
within time). 

Being a completely haphazard and disorganized 
search model, random search does worse than exha-
ustive search because of wasteful overlap. A searcher 
could do worse than random search deliberately 
however random search is often considered a lower 
bound for search effort. Exhaustive search is an upper 
bound in search effectiveness (Washburn, 2002). It 
is better than what can be achieved for real search. 
Real search generally falls in between.

5. MODELING THE EXPANDING AREA 
SEARCH PROBLEM WITH BINARY 

SENSORS

In our problem after the searcher gets the datum 
information it immediately proceeds to the target un-
certainty area and arrives at time t=0 to commence 
search at speed v. Target position (datum) was known 
t0 time units before searcher arrives (time late). Target 
is evading or drifting at constant speed u in any direc-

tion which can change at any time. Therefore, at t=0 
target is located somewhere in a circle, centered at 
datum, of radius r0=ut0. (See Figure 4) The searcher 
is a binary sensor with a maximum detection range 
of R and sweep width of w=2R.

The radius of the search area is initially r0 and after 
t hours of fruitless search the target is assumed to be 
within a circle of radius r0+ut and the radius grows by 

ut units in time t. In those search situations the target 
uncertainty area is an expanding localization circle 
whose area A(t), after search time, t, is:

( )2
0( )A t r utπ= +

	
(12)

And substituting equation (5) in (12), the detec-
tion rate is:

( )2
0

( ) wvt
r ut

γ
π

=
+ 	 (13)

5.1 Random Search of an Expanding Area
For the random search problem we use the general 

equation (4) for computing the CDPrand. By using the 
detection rate (13), (Coggins, 1971) and (Washburn, 
1980) express the CDPrand in an expanding area as:

( ) 0
0

( ) 1 exp
t
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wvF t  d  

r u


 
 
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
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Evaluating the integral in the exponent we get,

20 00 0
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t tr u u t
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Therefore CDP is;

( ) 2
00

( ) 1 exp 0
( )T rand

wv tF t t
t tu t

 
    

 
 for all  (16)

As t gets large, t / (t0 + t) ® 1, hence the maximum 
CDPrand that can be reached is, 

max
( ) 2

0

( ) 1 exprand T rand
wvCDP F
u tπ

 
= ∞ = − − 

 
	 (17)	

	

5.2 Exhaustive Search of an Expanding Area
If we are executing an exhaustive search, the same 

rule in (10) applies to CDPexh in expanding area case 
too where the CDP equals to the coverage factor C. 
Therefore we can simply compute;

( ) 2
00

( ) min ,1
( )T exh

wv tF t
t tu tπ

  =  
+   	

(18)

Similarly, as t gets large, the maximum CDPexh that 
can be reached is, 

max
( ) 2

0

( ) min ,1exh T exh
wvCDP F
u tπ

  = ∞ =  
  

	 (19)

For multiple searchers it is easy to show that 
CDP is computed by multiplying the expressions in 
parenthesis with the number of searchers, n for both 
random and exhaustive search cases.

5.3 Additional Analytical Results
For random search, if we call tα the time to achieve 

some fractional amount, α, of max
randCDP , for 0≤α≤ 1, 

then 

( )
max

( )T rand

rand

F t
CDP

αα =
	

(20)

and 
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2
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twv
t tu t
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2

0

2
0

ln (1 )exp
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α
π

α α
π
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(22)

For exhaustive search, if we call tα the time to 

achieve some fractional amount, α, of max
exhCDP ,  for, 

0≤α≤1 and if max 1.0exhCDP <  then

2
00

2
0

( )
twv

t tu t
wv
u t

α

απ
α

π

+
=

	

(23)

solves

0 ( 1)
1

for t tα
α α
α

= ⋅ ≠
− 	 (24)

For example; the searcher with a sweep width 
of w=1 nm (nautical mile) starts the search 30 min. 
after getting the datum information. The target evades 
with a speed of u=10 nm/hr and the searcher speed 
is v=250 nm/hr. CDPs for random and exhaustive 
search are computed by equations  (16) and (18)  and 
maximum CDPs are computed by equations  (17) and 
(19) respectively. The plot of CDPs with respect to 
search time t is in Figure 5. As seen from the plot, the 
maximum CDP for exhaustive search is 1.0 whereas 

 
Figure 3. Exhaustive and Random Search CDP Comparison For a Fixed Area A

Figure 4. Expanding Area Search Problem
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with the random search the probability goes down 
to 0.8 allowing a 0.2 chance of escape to the target.

Also by using equation (22) the effect of “knee of 
the curve” or “diminishing returns” for random search 
can easily be seen in this example by computing that 
α=82% of maximum CDP is attained after tα=1 hr 
of search, α=90% of maximum CDP after tα =2 
hrs and α=93% of maximum CDP after tα =3 hrs. 

Almost an infinite amount of time is needed to get 
the remaining %7. 

Figure 6 illustrates the CDP plots for random and 
exhaustive searches for t0 delay times 0.25, 0.50, 0.75 
and 1.0 hr. The plots show that exhaustive search 
always performs better than the random search for 
expanding area search problems as in fixed area 
search problems. However for small t the difference 

between two is negligible when compared to the large 
values of t. Another result is that as the delay time t0 
increases the CDP decreases for both search plans 
which means that if the searcher starts the search 
process soon after the datum time (with very small 
t0) it is highly probable to detect the target of interest.

6. SIMULATION

In order to verify the theoretical results derived 
in this study we test both the random and exhaus-
tive search models with Monte Carlo simulations 
in MATLAB®. For each simulation run we generate 

k=104 targets which move with a fixed speed u=15 
nm/hr away from the datum to a random direction. 
The search effort is discretized by allocating it at every 
small time interval Δt=0.02 hr. where we compute 
its size by a=wvΔt. The simulations are repeated for 
different values of time delay as t0=0.25; 0.50; 0.75; 
1.0. For random search the simulations are repeated 
for number of searchers n=1, 2 and 3. The searcher 
speed is set to v=30 nm/hr and sweep width w=5 nm 
constant. For each parameter set we generate i=103 
iterations and we repeat all parameter sets for random 
and exhaustive search plans until time Tmax=2 hrs. 

Figure 5. CDP Plots For Random and Exhaustive Searches

Figure 6. CDP Plots For Random and Exhaustive Searches For t0=0.25; 0.50; 0.75; 1.0 and n=1

 

Table 1: Simulation Parameter Sets

 

Figure 7. Simulation Results For Random Search For t0=0.25; 0.50; 0.75; 1.0 (n=1, 2, 3 and 4)
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The summary of parameter sets for simulation runs 
are as in Table 1.

After running the simulations it is observed that 
the results are very close to the theoretical results 
derived in previous section. As the delay time t0 in-
creases, CDP for any value of time decreases as well 
as the maximum CDP that can be achieved. As the 
number of searchers, n, increase the search effective-
ness increases but this increase is not linear with n for 
random search. The comparison of simulation results 
with the theoretical values are summarized in Figure 
7 below. It is also obvious that due to the diminish-
ing returns effect it would be a good idea to consider 
stopping spending more search effort after a certain 
value of t. For example, in the random search case 
with n=2 and t0=0.25 after searching the area for 
t=0.3 hr the CDP is 0.6, however after searching for 
another 0.3 hr. the updated CDP is only 0.7, with an 
increment of only 0.1. So the planners may consider 
stopping to spend search effort after 0.3 hr because 
of the diminishing returns effect.

7. SUMMARY

In this study we analyze the search problem where 
we search for a target with an area of uncertainty that 
is increasing over time and we have the options of 
conducting random or exhaustive search. Modeling 
this specific search problem we derive the effective-
ness of the search in terms of Cumulative Detection 
Probability (CDP) using basic parameters such as 
searcher and target speed, sweep width (searcher 
capability) and search delay time. To come up with 
closed form results we use the well-known search 
theory formulas for random and exhaustive searches. 
We also derive useful analytical results that will assist 
decision makers in planning and utilizing search effort 
considering the percentage of maximum CDP that 
can be achieved. Using formulae (16) and (18) it is 
possible to approximate the CDP for random and 
exhaustive searches respectively. Formulae  (22) and  
(24) can be used to approximate the amount of time 
needed to achieve a certain fraction of maximum 
CDP for searching expanding areas with random and 
exhaustive search respectively. The analytical results 

are verified with Monte Carlo simulations. The results 
seem to be in accordance with the theory. In specific 
the results derived in this study can be applied to mi-
litary operations to search mobile evaders or search 
and rescue operations to search for targets such as a 
life raft adrift in the ocean.
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